Reconstruction from Randomized Graph via Low Rank Approximation
نویسندگان
چکیده
The privacy concerns associated with data analysis over social networks have spurred recent research on privacypreserving social network analysis, particularly on privacypreserving publishing of social network data. In this paper, we focus on whether we can reconstruct a graph from the edge randomized graph such that accurate feature values can be recovered. In particular, we present a low rank approximation based reconstruction algorithm. We exploit spectral properties of the graph data and show why noise could be separated from the perturbed graph using low rank approximation. We also show key differences from previous findings of point-wise reconstruction methods on numerical data through empirical evaluations and theoretical justifications.
منابع مشابه
Input Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling
Often used as importance sampling probabilities, leverage scores have become indispensable in randomized algorithms for linear algebra, optimization, graph theory, and machine learning. A major body of work seeks to adapt these scores to low-rank approximation problems. However, existing “low-rank leverage scores” can be difficult to compute, often work for just a single application, and are se...
متن کاملGraph Reconstruction via Distance Oracles
We study the problem of reconstructing a hidden graph given access to a distance oracle. We design randomized algorithms for the following problems: reconstruction of a degree bounded graph with query complexity Õ(n); reconstruction of a degree bounded outerplanar graph with query complexity Õ(n); and near-optimal approximate reconstruction of a general graph.
متن کاملRandomized SVD Methods in Hyperspectral Imaging
In this paper, we present a randomized singular value decomposition (rSVD) method for the purposes of lossless compression, reconstruction, classification, and target detection with hyperspectral (HSI) data. Recent work in low-rank matrix approximations obtained from random projections suggest that these approximations are well-suited for randomized dimensionality reduction. Approximation error...
متن کاملLow-rank matrix reconstruction and clustering via approximate message passing
We study the problem of reconstructing low-rank matrices from their noisy observations. We formulate the problem in the Bayesian framework, which allows us to exploit structural properties of matrices in addition to low-rankedness, such as sparsity. We propose an efficient approximate message passing algorithm, derived from the belief propagation algorithm, to perform the Bayesian inference for...
متن کاملSampling and Reconstruction of Graph Signals via Weak Submodularity and Semidefinite Relaxation
We study the problem of sampling a bandlimited graph signal in the presence of noise, where the objective is to select a node subset of prescribed cardinality that minimizes the signal reconstruction mean squared error (MSE). To that end, we formulate the task at hand as the minimization of MSE subject to binary constraints, and approximate the resulting NP-hard problem via semidefinite program...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010